Seismic Restraints – IBC vs. UBC for Non-structural Components

Paul Selman | Kinetics Noise Control, Inc.
Senior Mechanical Engineer, PE
pselman@kineticsnoise.com
kineticsnoise.com
6300 Irelan Place, Dublin, Ohio 43017-0655
(614) 889-0480 Ext. 302

Agenda

- UBC
- IBC
- ASCE7
- Calculations
- Compare/Contrast
Uniform Building Code - UBC

• History
 o First published in 1927 by the International Conference of Building Officials (ICBO)
 o Intended to promote public safety, provided standardized requirements for safe construction which would not vary from city to city.

Uniform Building Code - UBC
continued

 o Updates were published approximately every three years until 1997, which was the final version of the UBC.
 o ICBO merged with Building Officials and Codes Administrators (BOCA) and the Southern Building Code Congress (SBCC)
Uniform Building Code - UBC continued

- UBC focused on earthquake design.

Uniform Building Code - UBC continued

- Seismic Restraint
 - Section 1632 – Lateral Force on Elements of Structures, Nonstructural Components and Equipment Supported by Structures
Uniform Building Code - UBC

continued

1632.2 Design for Total Lateral Force. The total design lateral seismic force, \(F_p \), shall be determined from the following formula:

\[
F_p = 4.0 \ C_a \ L_p \ W_p \quad (32-1)
\]

Alternatively, \(F_p \) may be calculated using the following formula:

\[
F_p = \frac{a_p \ C_a \ L_p}{R_p} \left(1 + 3 \frac{h_{sl}}{h_t} \right) W_p \quad (32-2)
\]

Except that:

\(F_p \) shall not be less than \(0.7C_aL_pW_p \) and need not be more than \(4C_aL_pW_p \) \((32-3) \)

International Building Code - IBC

• History
 • International Code Council (ICC) was established by joining of ICBO, BOCA and SBCC.
 • IBC was first published in 2000 by the ICC.
International Building Code - IBC
continued
- Updates are published every three years.
- IBC2003 referenced ASCE7-02 for seismic design loads.

International Building Code - IBC
continued
- IBC2015 is latest, most widely adopted version.
- IBC2018 is latest version, references ASCE7-16.
American Society of Civil Engineers – ASCE7

• Minimum Design Loads and Associated Criteria for Buildings and Other Structures

13.3 SEISMIC DEMANDS ON NONSTRUCTURAL COMPONENTS

13.3.1 Seismic Design Force

The horizontal seismic design force \(F_r \) shall be applied at the component’s center of gravity and distributed relative to the component’s mass distribution and shall be determined in accordance with Eq. 13.3-1:

\[
F_r = \frac{0.4qH_S S_{2D} W_p}{R_s \left(1 + 2 \frac{H}{l} \right)}
\]

(13.3-1)

\(F_r \) is not required to be taken as greater than

\[
F_p = 1.6S_{1D} W_p
\]

(13.3-2)

and \(F_p \) shall not be taken as less than

\[
F_p = 0.3S_{1D} W_p
\]

(13.3-3)
Determine F_p using project design criteria, where:

- $F_p =$ seismic design force
- $S_{DS} =$ spectral acceleration, short period
- $a_p =$ component amplification factor
- $I_p =$ component importance factor

Determine F_p using project design criteria, where:

- $W_p =$ component operating weight
- $R_p =$ component response modification factor
- $z =$ height in structure of point of attachment of component
- $h =$ average roof height of structure
IBC2009/ASCE7-05 Calculations continued

Fₚ using project design criteria, where:

\[W_p = 1,000 \text{ Kg} \]
\[S_{DS} = 0.464 \text{ g} \]
\[a_p = 2.5 \]
\[I_p = 1.25 \]
\[R_p = 6.0 \]
\[z = 60\text{m} \]
\[h = 60\text{m} \]

IBC2009/ASCE7-05 Calculations continued

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupancy Category</td>
<td>IV</td>
<td></td>
<td>Essential facilities</td>
</tr>
<tr>
<td>Site Class</td>
<td>C</td>
<td></td>
<td>Very Dense Soil</td>
</tr>
<tr>
<td>Mapped short period MCE</td>
<td>S₀</td>
<td>0.6</td>
<td>g. Section 1013.3.1</td>
</tr>
<tr>
<td>Short period site coefficient</td>
<td>Fₛ</td>
<td>1.16</td>
<td>Table 11.4-1</td>
</tr>
<tr>
<td>Spectral acceleration</td>
<td>Sₚ</td>
<td>0.464</td>
<td>g. Section 1012.3.1</td>
</tr>
<tr>
<td>Height of attachment</td>
<td>h</td>
<td>60</td>
<td>meters</td>
</tr>
<tr>
<td>Roof elevation</td>
<td>z</td>
<td>60</td>
<td>meters</td>
</tr>
<tr>
<td>Component operating weight</td>
<td>W₀</td>
<td>1,000</td>
<td>g. Section 1013.3.1</td>
</tr>
<tr>
<td>Component amp. Factor</td>
<td>q₀</td>
<td>2.5</td>
<td>Table 13.6-1, Air-side HVAC</td>
</tr>
<tr>
<td>Component Response Factor</td>
<td>Rₛ</td>
<td>6.0</td>
<td>Table 13.6-1, Air-side HVAC</td>
</tr>
<tr>
<td>Seismic Design Category</td>
<td>SDC</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

\[F_{L,max} = 523 \text{ Kg} \]
\[F_{max} = 290 \text{ Kg} \]
\[F_{L} = 174 \text{ Kg} \]

Equation 13.3-2
Equation 13.3-1
Equation 13.3-3
UBC1997 Calculations

1632.2 **Design for Total Lateral Force.** The total design lateral seismic force, F_p, shall be determined from the following formula:

$$ F_p = 4.0 \ C_a \ I_p \ W_p $$

(32-1)

Alternatively, F_p may be calculated using the following formula:

$$ F_p = \frac{a_p \ C_a \ I_p}{R_p} \left(1 + \frac{h_x}{h_r}\right) W_p $$

(32-2)

Except that:

- F_p shall not be less than $0.7C_aI_pW_p$ and
- need not be more than $4C_aI_pW_p$

(32-3)

UBC1997 Calculations continued

F_p using project design criteria, where:

- $W_p = 1,000$ Kg
- $I_p = 1.25$
- $C_a = 0.28$
- $R_p = 3.0$
- $a_p = 1.0$
UBC1997 Calculations continued

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupancy Category</td>
<td>IV</td>
<td></td>
<td>Table 1-1</td>
</tr>
<tr>
<td>Component Importance Factor</td>
<td>Ip</td>
<td>1.25</td>
<td>Section 15.1.1</td>
</tr>
<tr>
<td>Site Class</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mapped short period MCE</td>
<td>Zc</td>
<td>0.6</td>
<td>g. Section 1613.3.1</td>
</tr>
<tr>
<td>Short-period site coefficient</td>
<td>Fp</td>
<td>1.10</td>
<td>Table 11.4-1</td>
</tr>
<tr>
<td>Spectral acceleration</td>
<td>SPbk</td>
<td>0.484</td>
<td>g. Section 1622.3.1</td>
</tr>
<tr>
<td>Height of attachment</td>
<td>h</td>
<td>60</td>
<td>meters</td>
</tr>
<tr>
<td>Roof elevation</td>
<td>z</td>
<td>60</td>
<td>meters</td>
</tr>
<tr>
<td>Component operating weight</td>
<td>Wb</td>
<td>1,000</td>
<td>Kg</td>
</tr>
<tr>
<td>Component amp. Factor</td>
<td>αp</td>
<td>2.5</td>
<td>Table 13.6-1, Air-side HVAC</td>
</tr>
<tr>
<td>Component Response Factor</td>
<td>Rp</td>
<td>6.0</td>
<td>Table 13.6-1, Air-side HVAC</td>
</tr>
<tr>
<td>Seismic Design Category</td>
<td>SDC</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Seismic Design Lateral Force</td>
<td>Fp,DES</td>
<td>290 Kg</td>
<td>Equation 13.3-1</td>
</tr>
<tr>
<td></td>
<td>Fp</td>
<td>928 Kg</td>
<td>Equation 13.3-2</td>
</tr>
<tr>
<td></td>
<td>Fp,MIN</td>
<td>174 Kg</td>
<td>Equation 13.3-3</td>
</tr>
</tbody>
</table>

Compare Fp using UBC1997 and IBC2009

- \(F_{p,UBC97} < F_{p,IBC09}\)
- **UBC is fixed, unchanging**
- **IBC is changing, evolving every 3 years, benefits from continued advancements in seismic research.**
Bibliography

1) Uniform Building Code

2) Evolution of codes in the USA – NEHRP
 www.nehrp.gov/pdf/UJNR_2013_Rossberg_Manuscript

Bibliography continued

3) International Code Council
 https://www.iccsafe.org/

4) ASCE 7 online
 https://www.asce.org/asce-7/
Questions?

Paul Selman
pselman@kineticsnoise.com